

PROGRAMA FORMATIVO

Creación de prototipos de loT con Raspberry

DATOS GENERALES DE LA ESPECIALIDAD

I. Familia Profesional: Informática y comunicaciones

Área Profesional: Sistemas y telemática

2. Denominación: Creación de prototipos de IoT con Raspberry

3. Código: IFCT80

4. Nivel de cualificación: 3

5. Objetivo general:

Desarrollar prototipos que integren sensores, electrónica, tratamiento de datos, y otras tecnologías de Internet de las cosas (IOT) controlados con un computador tipo Raspberry y programados con un lenguaje de programación.

6. Prescripción de los formadores:

- 6.1. Titulación requerida:
 - Titulación universitaria: licenciatura, ingeniería, arquitectura, doctorado, título de grado, master oficial, diplomatura, ingeniería o arquitectura técnica u otros títulos equivalentes.
 - Ciclo formativo de grado superior en la familia de Informática y Comunicaciones .
- 6.2. Experiencia profesional requerida:

Experiencia profesional acreditable mínima de 6 meses relacionada con la especialidad.

6.3. Competencia docente

Será necesario tener formación metodológica o experiencia docente contrastada de al menos 300 horas.

7. Criterios de acceso del alumnado:

- 7.1. Nivel académico o de conocimientos generales:
 - Título de bachillerato, ciclo formativo de grado superior u otras titulaciones equivalentes.

Independientemente de lo anterior, todas las personas aspirantes realizarán una prueba de nivel donde demostrarán conocimientos suficientes para seguir el curso.

Conocimientos de programación en Python, e inglés a nivel de comprensión lectora.

8. Número de participantes:

Máximo 20 participantes para cursos presenciales.

9. Relación secuencial de módulos formativos:

- Módulo 1. El ecosistema Raspberry
- Módulo 2. Desarrollo de aplicaciones de Internet de las cosas (IOT)

10. Duración:

Horas totales: 200 horas

Distribución horas:

Presenciales: 200 horas

11. Requisitos mínimos de espacios, instalaciones y equipamiento

11.1. Espacio formativo:

• Aula informática. Superficie: 45 m² para grupos de 15 alumnos (3 m² por alumno).

Cada espacio estará equipado con mobiliario docente adecuado al número de alumnos, así mismo constará de las instalaciones y equipos de trabajo suficientes para el desarrollo del curso.

11.2. Equipamiento:

Los equipos tendrán unas características equivalentes a las enumeradas a continuación, consideradas siempre como mínimas:

- Un ordenador por alumno y uno para el profesor con las siguientes características mínimas:
 - . CPU: procesador Intel Core i5 de 5ª generación o similar.
 - . 8 GB de RAM.
 - . Disco duro de 500 GB.
 - . Conexión a red ethernet o wifi.
 - . Teclado multimedia USB.
 - . Ratón sensor óptico USB de 2 botones y rueda de desplazamiento.
 - . Monitor color de 19 "LCD.
 - . Licencia de sistema operativo.
 - . Licencia de software antivirus.
- Para cada alumno y el profesor el siguiente equipamiento mínimo:
 - . Un ordenador Raspberry Pi 3 o superior o compatible con fuente de alimentación y caia.
 - . Tarjeta SD / microSD / SDHC de 16GB.
 - . Conexión a red ethernet o wifi.
 - . Teclado multimedia USB o inalámbrico.
 - . Ratón sensor óptico USB o inalámbrico de 2 botones y rueda de desplazamiento.
 - . Monitor color de 19" LCD y cable para conectar con la Raspberry.
 - Licencia de sistema operativo.
 - . Lector de tarjetas USB con capacidad para leer SD ...
 - . Kit de sensores, leds, LCD, breadboard, cables, potenciómetros, pantalla ... para el montaje de prototipos.
 - . Aparatos de medida y herramientas para realizar los montajes.
- Licencia de software ofimático necesario para la impartición del curso.
- Licencias del software necesario para la impartición del curso.
- Conectividad a Internet.
- Impresora láser con conexión a red.
- Pantalla y cañón de proyección.

Las instalaciones y equipamientos deberán cumplir la normativa industrial e higiénico sanitaria correspondiente y responderán a medidas de accesibilidad universal y seguridad de los participantes.

En caso de que la formación se dirija a personas con discapacidad se realizarán las adaptaciones y los ajustes razonables para asegurar su participación en condiciones de igualdad.

12. Ocupación/es de la clasificación de ocupaciones

31241045 Técnicos en electrónica de equipos informáticos

31241054 Técnicos en electrónica digital

38121023 Técnicos en sistemas microinformáticos

38201017 Programadores de aplicaciones informáticas

13. Evaluación del aprendizaje

Durante el proceso de aprendizaje se aplicará una evaluación continúa en la que se tendrán en cuenta diferentes instrumentos: ejercicios, actividades, pruebas teóricas, trabajos individuales o en equipo y un proyecto final.

Al finalizar, el alumnado defenderá un proyecto tecnológico donde pondrá en práctica los contenidos desarrollados a lo largo del curso y demostrará las competencias técnicas y soft skills trabajadas. El proyecto tendrá diferentes fases, desde el planteamiento y estudio de las necesidades del cliente hasta la entrega y presentación final. La evaluación de este proyecto, entregas parciales y presentación final, formarán parte de la evaluación continúa y evaluación final, sin detrimento del uso de otros instrumentos complementarios.

MÓDULOS FORMATIVOS

Módulo nº 1

Denominación: El ecosistema Raspberry

Objetivo: Instalar y configurar el sistema operativo compatible con el hardware Raspberry

Duración: 60 horas

Contenidos teórico- prácticos:

Introducción

- Modelos
- Hardware
- Entradas y salidas
- Kits

Sistema Operativo

- Distribuciones Linux
 - Raspbian
 - Distribuciones media center y de emulación
 - Otras distribuciones
- Otros SO
 - Windows IoT Core
 - RaspBSD (FreeBSD)

...

Iniciación a Linux

- Instalación y configuración
- El kernel
- Acceso al hardware

- SSH

Proyecto final I

Módulo nº 2

Denominación: Desarrollo de aplicaciones de Internet de las cosas (IOT)

Objetivo: Crear componentes de software que accedan a dispositivos electrónicos y se comuniquen con aplicaciones de Internet

Duración: 140 horas

Contenidos teórico - prácticos:

Entorno de trabajo

- IDE
- Control de versiones (Git, ...)

Electrónica básica

- Circuitos
- Protoboard
- Fuentes
- Resistencia
- Potenciómetro
- Condensador
- Diodo
- Transistor
- Instrumentos de medida (multímetro...)
- Herramientas
- Elementos analógicos y digitales
- Actuadores

Acceso y control de hardware

- Leds
- Sensores
- Pantallas
- Actuadores
- Vídeo
- Comunicaciones

Recogida y manipulación de información

- Integración de base de datos
- Archivos

Comunicaciones. Wifi, Ethernet, USB ...

APIs para IoT

- Cayenne
- ThingSpeak
- Cosm.com

Proyecto final II